• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Artificial Intelligence Approach to Estimate Peak-Hour Travel Time

    Thumbnail
    Date
    2023-01-01
    Author
    Ghanim, Mohammad Shareef
    Shaaban, Khaled
    Siam, Abdulla
    Metadata
    Show full item record
    Abstract
    Average delays are an example of traffic network performance measures. They can be measured at intersections to estimate the average delay per vehicle at various levels, such as intersection, approach, or lane group. On the other hand, average delays at a given route are implicitly measured by estimating the difference between free-flow travel time to the observed ones. Different methods are used to estimate travel time for a given route, such as floating car, average speed, and vehicle tracking methods. This paper focuses on developing an artificial neural networks (ANN) model to predict travel time for specific routes based on field travel time measurements and other easy to measure characteristics, that are related to geometric layouts, peak-hour periods, posted speed limits, and route lengths. Travel time data for 75 different segments located in the State of Qatar were studied. Directional travel time data were measured in three different peak periods. A total of 450 travel time values were collected and analyzed. An ANN model was trained to estimate travel time. The results show that the ANN model was able to provide a reasonable estimation of travel time using limited information. The slopes of the regression plots between observed and predicted travel time values show a clear linear trend, with slopes around 0.85, and an intercept that is around 2.0.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164539480&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IETC57902.2023.10152121
    http://hdl.handle.net/10576/51113
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video