• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of fluctuations of antenna pattern in U-V2X communications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1874490723000691-main.pdf (982.0Kb)
    Date
    2023-06-30
    Author
    Arif, Mohammad
    Hasna, Mazen O.
    Metadata
    Show full item record
    Abstract
    The third-generation partnership project (3GPP) defined several scenarios of vehicle-to-everything (V2X) networks such as vehicle-to-vehicle, vehicle-to-pedestrian, and vehicle-to-infrastructure. Unmanned aerial vehicles (UAVs) exploiting such scenarios for vehicular applications like vehicular-platooning, autonomous driving, and traffic management have shown improved networks’ performance in UAV-V2X (U-V2X) communications. This promising performance is typically obtained by considering high directional UAV antennas. However, the UAV vibration makes UAV antennas’ beam-width sensitive to UAV fluctuations which results in degrading the networks’ performance. Thus, in this paper, the performance of a U-V2X network in the presence of UAV fluctuations is investigated. The UAVs are modeled using an independent homogeneous Poisson Point Process and the vehicular-nodes are modeled using an independent Poisson Line Process. To this end, the association probability and success probability of various links such as vehicular-node connected to a UAV link, vehicular-node connected to a near-by vehicular-node link, and the overall U-V2X link are derived. In addition, the effect of different network settings such as the number of vehicular-nodes, UAVs, roads, and antennas is quantified. Moreover, the spectral efficiency of a U-V2X network is evaluated. Extensive simulations revealed that V2X networks facilitate UAVs and that for less dense areas with fewer roads, buildings, and crowds; UAVs provide more reliable links for connectivity than vehicular-nodes. Furthermore, it is also revealed that UAVs provide less reliable connection for V2X networks with larger UAV antenna fluctuations.
    URI
    https://www.sciencedirect.com/science/article/pii/S1874490723000691
    DOI/handle
    http://dx.doi.org/10.1016/j.phycom.2023.102066
    http://hdl.handle.net/10576/51253
    Collections
    • Electrical Engineering [‎2848‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video