• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Editorial: Time frequency and array processing of non-stationary signals

    Thumbnail
    View/Open
    Open Access Version of Record under the terms of the Creative Commons Attribution License (214.3Kb)
    Date
    2012-10-30
    Author
    Belouchrani, Adel
    Abed-Meraim, Karim
    Boashash, Boualem
    Metadata
    Show full item record
    Abstract
    Conventional time-frequency analysis methods were extended to data arrays in many applications, and there is the potential for more synergistic development of new advanced tools by exploiting the joint properties of time-frequency methods and array signal processing methods. Conventional array signal processing assumes stationary signals and mainly employs the covariance matrix of the data array. This assumption is motivated by the crucial need in practice for estimating sample statistics by resorting to temporal averaging under the additional hypothesis of ergodic signals. When the frequency content of the measured signals is time varying (i.e., non-stationary signals), this class of approaches can still be applied. However, the achievable performances in this case are reduced with respect to those that would be achieved in a stationary environment. Instead of considering the nonstationarity as a shortcoming, time frequency array processing (TFAP) takes advantage of the nonstationarity by considering it as a source of information in the design of efficient algorithms in such nonstationary environments. Generally, this significantly improves performance. This improvement comes essentially from the fact that the effects of spreading the noise power while localizing the source energy in the time frequency domain increases the signal to noise ratio (SNR). Such approaches found applications in many important fields dealing with nonstationary signals and multi-sensor systems, such as biomedical, radar, seismic, telecommunications, and mechanical engineering.
    DOI/handle
    http://dx.doi.org/10.1186/1687-6180-2012-230
    http://hdl.handle.net/10576/5164
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video