Efficient Test Collection Construction via Active Learning
المؤلف | Rahman, Md Mustafizur |
المؤلف | Kutlu, Mucahid |
المؤلف | Elsayed, Tamer |
المؤلف | Lease, Matthew |
تاريخ الإتاحة | 2024-02-21T05:51:44Z |
تاريخ النشر | 2020-09-14 |
اسم المنشور | ICTIR 2020 - Proceedings of the 2020 ACM SIGIR International Conference on Theory of Information Retrieval |
المعرّف | http://dx.doi.org/10.1145/3409256.3409837 |
الاقتباس | Rahman, M. M., Kutlu, M., Elsayed, T., & Lease, M. (2020, September). Efficient test collection construction via active learning. In Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval (pp. 177-184). |
الرقم المعياري الدولي للكتاب | 978-145038067-6 |
الملخص | To create a new IR test collection at low cost, it is valuable to carefully select which documents merit human relevance judgments. Shared task campaigns such as NIST TREC pool document rankings from many participating systems (and often interactive runs as well) in order to identify the most likely relevant documents for human judging. However, if one's primary goal is merely to build a test collection, it would be useful to be able to do so without needing to run an entire shared task. Toward this end, we investigate multiple active learning strategies which, without reliance on system rankings: 1) select which documents human assessors should judge; and 2) automatically classify the relevance of additional unjudged documents. To assess our approach, we report experiments on five TREC collections with varying scarcity of relevant documents. We report labeling accuracy achieved, as well as rank correlation when evaluating participant systems based upon these labels vs. full pool judgments. Results show the effectiveness of our approach, and we further analyze how varying relevance scarcity across collections impacts our findings. To support reproducibility and follow-on work, we have shared our code online\footnote\urlhttps://github.com/mdmustafizurrahman/ICTIR_AL_TestCollection_2020/. |
راعي المشروع | Qatar National Research Fund (QNRF) - NPRP 7-1313-1-245. |
اللغة | en |
الناشر | Association for Computing Machinery |
الموضوع | active learning evaluation information retrieval test collections |
النوع | Conference Paper |
الصفحات | 177–184 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]