• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microstructure and mechanical behavior of hot extruded aluminum/tin-bismuth composites produced by powder metallurgy

    Thumbnail
    View/Open
    applsci-10-02812.pdf (8.378Mb)
    Date
    2020
    Author
    Khan, Adnan
    Matli, Penchal R.
    Nawaz, Muddasir
    Mattli, Manohar R.
    Parande, Gururaj
    Manakari, Vyasaraj
    Shakoor, Abdul
    Aljaber, Amina S.
    Gupta, Manoj
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, Al-BiSn composites were synthesized by a combination of microwave sintering and hot extrusion processes. The structural, morphological, mechanical, and thermal properties were investigated to elucidate the role of Bi60Sn40 (BiSn) alloy content (5, 10, and 15 wt.%) in modifying the properties of Al-BiSn composites. The X-ray diffraction (XRD) patterns confirmed the presence of aluminum and BiSn particles. Distribution of BiSn particles in Al-BiSn composites was confirmed by field emission scanning electron microscopy associated with energy dispersive X-ray analysis (FE-SEM-EDX). Results indicated that hot extruded Al-(15 wt.% BiSn) composite exhibits maximum hardness (78 ± 4 Hv) and tensile strength (185 ± 3 MPa), which were 117% and 58% improvements, respectively, compared to pure Al. This improvement in mechanical properties can be attributed to the strengthening effect of BiSn particles. A decline in the values of the coefficient of thermal expansion (CTE) with an increasing amount of BiSn particles reflects the enhanced thermal stability of developed Al-BiSn composites. The promising properties of Al-BiSn composites make them suitable for many industrial applications.
    DOI/handle
    http://dx.doi.org/10.3390/APP10082812
    http://hdl.handle.net/10576/52827
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video