Level sets of potential functions bisecting unbounded quadrilaterals
المؤلف | Nasser, Mohamed M.S. |
المؤلف | Nasyrov, Semen |
المؤلف | Vuorinen, Matti |
تاريخ الإتاحة | 2024-03-12T08:43:18Z |
تاريخ النشر | 2022-12 |
اسم المنشور | Analysis and Mathematical Physics |
المعرّف | http://dx.doi.org/10.1007/s13324-022-00732-3 |
الاقتباس | Nasser, M. M., Nasyrov, S., & Vuorinen, M. (2022). Level sets of potential functions bisecting unbounded quadrilaterals. Analysis and Mathematical Physics, 12(6), 149. |
الرقم المعياري الدولي للكتاب | 1664-2368 |
الملخص | We study the mixed Dirichlet–Neumann problem for the Laplace equation in the complement of a bounded convex polygonal quadrilateral in the extended complex plane. The Dirichlet / Neumann conditions at opposite pairs of sides are { 0 , 1 } and { 0 , 0 } , resp. The solution to this problem is a harmonic function in the unbounded complement of the polygon known as the potential function of the quadrilateral. We compute the values of the potential function u including its value at infinity. The main result of this paper is Theorem 4.3 which yields a formula for u(∞) expressed in terms of the angles of the polygonal given quadrilateral and the well-known special functions. We use two independent numerical methods to illustrate our result. The first method is a Mathematica program and the second one is based on using the MATLAB toolbox PlgCirMap. The case of a quadrilateral, which is the exterior of the unit disc with four fixed points on its boundary, is considered as well. |
راعي المشروع | Volga Region Mathematical Center (agreement no. 075-02-2022-882). |
اللغة | en |
الناشر | Springer Nature |
الموضوع | Conformal mapping Dirichlet–Neumann boundary value problem Hyperbolic geometry Potential function Quadrilateral Schwarz–Christoffel formula |
النوع | Article |
رقم العدد | 6 |
رقم المجلد | 12 |
ESSN | 1664-235X |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [738 items ]