• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Two-Stage Energy Anomaly Detection for Edge-based Building Internet of Things (BIoT) Applications

    View/Open
    A_Two-Stage_Energy_Anomaly_Detection_for_Edge-based_Building_Internet_of_Things_BIoT_Applications.pdf (544.6Kb)
    Date
    2022-12
    Author
    Himeur, Yassine
    Fadli, Fodil
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    The Building Internet of Energy (BIoE) is quite promising for curtailing energy consumption, reducing costs, and promoting building transformation. Integrating Artificial Intelligence into the BIoE is essential for big data analysis and intelligent decision-making. Typically, using deep learning to predict energy consumption and detect abnormal energy usage is gaining growing interest in BIoE. However, most models use supervised learning and, thus, require data annotation for model training. This is a tough and costly task, which is often performed by experts. This paper proposes an intelligent Anomaly Detection of Energy Consumption approach using an improved two-stage, hybrid supervised-unsupervised learning process. Specifically, to detect abnormal energy consumption, our methodology identifies the anomalies by analyzing the shape of daily energy usage curves themselves instead of the consumption values. Thus, energy consumption profiles were split into weekday and weekend classes. Then, eXtreme Gradient Boosting (XGBoost) is adopted to build a regression model that enables labeling consumption anomalies of the weekdays class using a rule-based algorithm and residuals. Following, unsupervised anomaly detection is conducted using an Isolation Forest algorithm. Next, the abnormalities detected from the two stages are combined. The empirical evaluation of the proposed scheme illustrates promising anomaly detection accuracy, which has reached 95.93%.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147140704&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ICSPIS57063.2022.10002641
    http://hdl.handle.net/10576/53149
    Collections
    • Architecture & Urban Planning [‎308‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video