• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electronic vs Ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries

    Thumbnail
    Date
    2014-03-14
    Author
    Madec, L.
    Youssry, M.
    Cerbelaud, M.
    Soudan, P.
    Guyomard, D.
    Lestriez, B.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Here, we report the electrochemical response of the LTO/KB anolytes vs. lithium as function of the cycling rate in static mode (i.e. no flow) and using a home-made cell. The KB content was fixed at 3 wt% while the LTO content was varied between 15 and 25 wt%. The anolyte thickness in the cell was varied between 0.5 and 1.5 mm. Impedance spectroscopy allowed to quantify the extent of KB percolation in the anolyte. The active mass truly electrochemically reactive is critically dependent on the extent of percolation of the KB conductive additive. Rate limitations are influenced by both the ionic and the electronic wiring of the active mass. The electronic limitations are strongly dependent on the extent of percolation of KB which is influenced by the LTO/KB ratio and cell dimensions. Above a critical thickness in the 0.5-1 mm range, depending on the LTO content, the rate performance are significantly decreased. The better understanding of the rate limitations will allow a more efficient optimization of the suspension formulation as well as the design of RFB reactors. © 2014 The Electrochemical Society. All rights reserved.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904822148&origin=inward
    DOI/handle
    http://dx.doi.org/10.1149/2.035405jes
    http://hdl.handle.net/10576/53354
    Collections
    • Materials Science & Technology [‎316‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video