• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transformerless Microinverter with Low Leakage Current Circulation and Low Input Capacitance Requirement for PV Applications

    Thumbnail
    View/Open
    Thesis-Master of Science (3.839Mb)
    Date
    2017-01
    Author
    Khan, Ahmad Mirdad
    Metadata
    Show full item record
    Abstract
    The inevitable depletion of limited fossil fuels combined with their harmful footprint on the environment led to a global pursuit for alternative energy sources that are clean and inexhaustible. Renewable energies such as wind, biomass and solar are the best alternative energy candidates, with the latter being more suitable for GCC countries. Besides, the energy generated from photovoltaic (PV) modules is one of the elegant examples of harnessing solar energy, as it is clean, pollutant-free and modular. Furthermore, recent advances in PV technology, especially grid-connected PV systems revealed the preeminence of using multiple small inverters called (Microinverters) over using the conventional single inverter configuration. Specifically, the break-even cost point can be reached faster and the system modularity increases with microinverters usage. Nonetheless, due to microinverter’s small ratings designers prefer transformerless designs because transformer removal achieves higher efficiency and power density. However, the transformer removal results in loss of galvanic isolation that leads to dangerous leakage current circulation that affects system safety. Another issue with microinverters is that since they are installed outside their bulky DC-Link electrolytic capacitor lifetime deteriorates the system reliability because electrolytic capacitor failure rate increases as temperature increases. Moreover, the DC-Link capacitor is used to decouple the 2nd order power harmonic ripples that appear in single-phase systems. Thus, the objective of this thesis is to design an efficient transformerless microinverter that has low leakage current circulation and low input capacitance requirement with a minimum number of active switches. In other words, the objective is to increase the safety and the reliability of the system while maintaining the high efficiency. Eventually, the configuration selected is the transformerless differential buck microinverter with LCL filter and it is modeled with passive resonance damping and active resonance damping control.
    DOI/handle
    http://hdl.handle.net/10576/5346
    Collections
    • Electrical Engineering [‎56‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video