• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ether, sulfide and sulfone derivatives of cinnamaldehyde: Insights into synthesis, structural elucidation and solvatochromism

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2024-06-05
    Author
    Al-Marri, Jawaher S.
    Shraim, Amjad M.
    Salih, Kifah S.M.
    Metadata
    Show full item record
    Abstract
    Symmetric ether, sulfide and sulfone derivatives based on Schiff base functionalized group (3a-c) were synthesized via classical condensation of 4,4′-diaminodiphenyl precursors (1a-c) and cinnamaldehyde (2) in methanol at ambient reaction settings. The compounds were characterized using CHN, UV–Vis, FTIR, and 1H- and 13CNMR. The origin of absorption spectra was chased using Time-Dependent Density-Functional Theory (TD-DFT) in order to figure out the electronic transitions. The compounds exhibited almost a similar electronic potential as displayed by the molecular electrostatic potential. The energy gap of these materials was extracted from the computational approaches, showing ΔE of 3.778, 3.724, and 4.014 eV respectively for 3a, 3b, and 3c. These values were further harnessed to estimate the global reactivity parameters. Moreover, the electrophilic and nucleophilic points were examined through surface analysis of the optimized structures via DFT simulations. Such investigations support the compounds’ molecular structures via common noncovalent interaction, like hydrogen bonding and non-classical C–H…π forces. Experimental and computational findings were in a respectable agreement to display that only compound 3c possesses the ability of altering its maximum absorption under different solvent conditions. A substantial shifting of the maximum absorption was noticed with ethyl alcohol at λmax = 321 nm, referring to a 32 nm of blue shift in respect to acetic acid, which could be responsible for the partial protonation of the sulfone group.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185261768&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.molstruc.2024.137758
    http://hdl.handle.net/10576/53504
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video