Evaluation and calibration of dynamic modulus prediction models of asphalt mixtures for hot climates: Qatar as a case study
Author | Ahmad, Al-Tawalbeh |
Author | Sirin, Okan |
Author | Sadeq, Mohammed |
Author | Sebaaly, Haissam |
Author | Masad, Eyad |
Available date | 2024-03-26T09:55:59Z |
Publication Date | 2022-10-17 |
Publication Name | Case Studies in Construction Materials |
Identifier | http://dx.doi.org/10.1016/j.cscm.2022.e01580 |
Citation | Al-Tawalbeh, A., Sirin, O., Sadeq, M., Sebaaly, H., & Masad, E. (2022). Evaluation and calibration of dynamic modulus prediction models of asphalt mixtures for hot climates: Qatar as a case study. Case Studies in Construction Materials, 17, e01580. |
Abstract | The dynamic modulus (|E*|) of asphalt mixtures is one of the most important inputs in Mechanistic-Empirical (ME) pavement analysis and design. Several models have been developed to predict the dynamic modulus based on mixture volumetrics and material properties. This study aimed to calibrate and validate two commonly used models (i.e., Hirsch model and Alkhateeb model) for predicting the dynamic modulus of asphalt mixtures in Qatar. Based on the study outcomes, the Hirsch model was found to have a high prediction performance of asphalt mixture moduli before calibration with a coefficient of determination (R2) of 87.2 % between predicted and measured values. This R2 value improved slightly after calibration to 89.2 %, Alkhateeb model, on the other hand, had a coefficient of determination of 70.8 % before calibration, which also improved to 89.2 % after calibration. The moduli predicted by the Hirsch model before and after calibration were employed in this study to perform a mechanistic-empirical analysis of the performance of various typical pavement sections in Qatar. According to the findings, the percentage change in the predicted fatigue damage due to the use of the calibrated Hirsch model reached more than 50 % with an average value of 17.33 %, while the percent change in rutting reached 14 % with an average value of 3.65 %. These results highlight the importance of using locally calibrated models for the dynamic modulus in order to improve performance predictions. |
Sponsor | This publication was jointly supported by Qatar University and Texas A&M University at Qatar, IRCC-2019-011 (International Research Collaboration Co-Fund). Qatar National Library funded the open-access publication of this article. |
Language | en |
Publisher | Elsevier |
Subject | Hirsch model Alkhateeb model Dynamic modulus Mechanistic-Empirical Pavement Design Qatar |
Type | Article |
Volume Number | 17 |
Open Access user License | http://creativecommons.org/licenses/by/4.0/ |
ESSN | 2214-5095 |
Check access options
Files in this item
This item appears in the following Collection(s)
-
Civil and Environmental Engineering [851 items ]