• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal behavior and post-heating fracture characteristics of polypropylene microfiber-reinforced geopolymer binders

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0950061822009904-main.pdf (6.491Mb)
    Date
    2022-04-05
    Author
    Mohammad R., Irshidat
    Al-Nuaimi, Nasser
    Rabie, Mohamed
    Metadata
    Show full item record
    Abstract
    This paper investigated the post-heating behavior of fly ash-based geopolymer binders reinforced with polypropylene (PP) microfibers. Geopolymer binders with different fiber contents including 0%, 0.05%, 0.1%, and 0.2% by fly ash weight were prepared and exposed to elevated temperatures of 200 °C, 400 °C, and 600 °C. The effect of fiber reinforcement on the mechanical strengths of unheated binders, residual fracture characteristics of heat-damaged binders, microstructure deterioration, and thermal properties of geopolymer specimens were investigated. The results revealed that PP microfibers had neglected effect on the compressive strength of the binders, but clearly enhanced their flexural strength. Maximum enhancement of 17% was observed in the flexural strength of binders with 0.05% PP fibers. Using PP microfibers enhanced the residual compressive but not the flexural strength of the heat-damaged binders. The fiber-reinforced specimens had higher residual compressive strength compared to the corresponding fibreless ones when heated up to 500 °C. The modulus of elasticity and the toughness of the binders decreased with heating. Fiber-reinforced specimens showed higher reduction in the toughness but lower reduction in the modulus due to heating compared to the fibreless specimens. Using PP microfibers reduced the thermal conductivity of geopolymer binders. The reduction due to the fiber addition was less pronounced for heated specimens compared to unheated ones.
    URI
    https://www.sciencedirect.com/science/article/pii/S0950061822009904
    DOI/handle
    http://dx.doi.org/10.1016/j.conbuildmat.2022.127310
    http://hdl.handle.net/10576/53929
    Collections
    • Center for Advanced Materials Research [‎1497‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video