• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Removal of heavy metals from wastewater by aerogel derived from date palm waste

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    9. Aerogel Paper ER.pdf (5.898Mb)
    Date
    2024-03-15
    Author
    Soumya, Gupta
    Saud, Asif
    Munira, Nazmin
    Allal, Ahmed
    Preud'homme, Hugues
    Shomar, Basem
    Zaidi, Syed Javaid
    Shomar, Basem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Cellulose that has been sourced from date palm leaves as a primary component was utilised. This cellulose served as the foundational material for the development of an aerogel composite. During this process, MXene (Ti3C2Tx) played a pivotal role in enhancing the overall composition of the aerogel. To ensure the stability and durability of the resulting aerogel structure, calcium ions were introduced to the mix. These ions facilitated the cross-linking process of sodium alginate molecules, ultimately leading to the formation of calcium alginate. This cross-linking step is crucial for the enhanced mechanical and chemical stability of the aerogel. Incorporating alginate and Ti3C2Tx into the cellulose aerogel enhanced its structural integrity in aqueous conditions and increased its adsorption capacity. When evaluated with synthetic wastewater, this composite exhibited remarkable adsorption capacities of 72.9, 114.4, 92.9, and 123.9 mg/g for As, Cd, Ni, and Zn ions, respectively. A systematic study was carried out to see the effect of various parameters, including contact time, MXene concentration, pH, and temperature on the adsorption of these elements. Peak adsorption was achieved at 60 min, favoring a pH range between 6 and 8 and exhibited optimal sorption efficiency at lower temperatures. The adsorption kinetics adhered closely to a pseudo-second-order, while the Freundlich model adeptly described the adsorption isotherms. An interesting result of this research was the aerogel's regenerative potential. After undergoing a basic acid treatment, the MXene/cellulose/alginate aerogel composite could be restored and reused for up to three cycles, all while maintaining its core performance capabilities even after the rigorous cross-linking processes. In three consecutive cycles, the removal percentages for As, Cd, Ni, and Zn were 48.15%, 80.38%, 56.51%, and 86.12% in cycle 1; 37.35%, 65.63%, 45.97%, and 78.42% in cycle 2; and 28.60%, 56.22%, 34.70%, and 65.83% in cycle 3, respectively. The composite was tested in conditions resembling seawater salinity. Impressively, the aerogel continued to demonstrate a significant ability to adsorb metals, reinforcing its potential utility in real-world aquatic scenarios. These findings suggest that the composite aerogel, integrating MXene, cellulose, and alginate, is an effective medium for the targeted removal of heavy metals from aquatic environments.
    URI
    https://www.sciencedirect.com/science/article/pii/S0013935123028268
    DOI/handle
    http://dx.doi.org/10.1016/j.envres.2023.118022
    http://hdl.handle.net/10576/53966
    Collections
    • Earth Science Cluster [‎215‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video