• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of permeability impairment dynamics in porous media: A machine learning approach

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0032591023010550-main.pdf (16.83Mb)
    Date
    2023-12-13
    Author
    Ahmed, Elrahmani
    Al-Raoush, Riyadh I.
    Ayari, Mohamed Arselene
    Metadata
    Show full item record
    Abstract
    The prediction of clogging and permeability impairment dynamics in porous media is crucial for the optimization of various industrial and natural processes. This paper presents a novel machine learning-based approach for predicting the dynamics of throat clogging and permeability impairment due to fine migration within realistic porous media under varying hydro-physical conditions. A Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) numerical framework, employing a four-way coupling scheme, was used to generate the data for training and validation of the Machine Learning Model (MLM). One hundred and twenty distinct CFD-DEM simulations were performed to generate over 190,000 data points, at throat level, for the training of the MLM. Simulation cases encompassing ranges of porous media geometry, fine particle size, flow velocity, fine particle concentration, grains surface roughness, and fines and grains zeta potential. Geometries of porous media were extracted from high-resolution 3D images of natural sand obtained using micro-computed tomography imaging. The developed MLM predicts the temporal evolution of clogged throats and permeability impairment. The MLM was established by connecting three Machine Learning Sub-Models (MLSMs). The first is a throat-classification MLSM; which classifies the throats based on their location and size to identify clogged throats. Subsequently, a pore volume regression MLSM is implemented to identify the pore volume at which each clogged throat becomes clogged. Finally, the permeability impairment regression MLSM predicts the permeability reduction based on the clogged throat's information and pore volumes associated with clogging. The throats classification in the final MLM showed an accuracy of 95% in predicting clogged throats when compared to direct CFD-DEM simulations whereas the prediction of the permeability impairment had an R-squared value of 0.99. The MLM developed in this study stands as a robust framework for precisely quantifying key microscale parameters; where its predictions were used to quantify the significance of altering the hydro-physical parameters on the microscale parameters of the clogging dynamics. The proposed MLM provides an accurate and fast prediction of porous media clogging and permeability impairment dynamics, with potential applications in various industries, including oil and gas, environmental engineering, and material science.
    URI
    https://www.sciencedirect.com/science/article/pii/S0032591023010550
    DOI/handle
    http://dx.doi.org/10.1016/j.powtec.2023.119272
    http://hdl.handle.net/10576/54036
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Technology Innovation and Engineering Education Unit [‎63‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video