عرض بسيط للتسجيلة

المؤلفAlkhazendar, Iyad
المؤلفZubair, Mohammed
المؤلفQidwai, Uvais
تاريخ الإتاحة2024-05-07T05:39:55Z
تاريخ النشر2023
اسم المنشورLecture Notes in Networks and Systems
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-031-16075-2_58
الرقم المعياري الدولي للكتاب23673370
معرّف المصادر الموحدhttp://hdl.handle.net/10576/54659
الملخصThe IoT has become an indispensable part of human lives at work and home applications. Due to the need for an enormous number of IoT devices manufacturers are least concerned about security vulnerabilities during designing and developing of these devices. Because of this, it becomes easier for adversaries to manipulate the hardware and insert Trojans or Remote File Inclusion to control remotely. In this research, we aim to build a model to identify hardware Trojans in IoT devices using Deep learning. We used different machine learning models to evaluate the performance and accuracy. In addition we choose a distinctive feature that can detect the presence of Trojan in these devices. The proposed model is evaluated using an existing and real-time dataset generated using a smart city testbed, The testbed used was designed to simulate and evaluate the Hardware trojan attacks, and by using the real-time dataset we could measure the power profile and network traffic on the IoT gateway device to analyze the performance and the accuracy.
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعDOS attack
Hardware Trojan
Internet of Things
Smart cities
Smart detection system
العنوانSmart Hardware Trojan Detection System
النوعConference Paper
الصفحات791-806
رقم المجلد544 LNNS
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة