• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrochemical Nonenzymatic Acetone Sensing: A Novel Approach of Biosensor Platform Based on CNT/CuO Nanosystems

    Thumbnail
    View/Open
    Macromolecular Symposia - 2023 - Geetha - Electrochemical Nonenzymatic Acetone Sensing A Novel Approach of Biosensor.pdf (1.462Mb)
    Date
    2023
    Author
    Geetha, Mithra
    Nair, Gayathri Geetha
    Sadasivuni, Kishor Kumar
    Al-maadeed, Somaya
    Muthalif, Asan G. A.
    Metadata
    Show full item record
    Abstract
    A promising approach for noninvasive medical diagnosis may be to measure the VOCs produced by metabolic changes or pathological disorders in human sweat, such as measuring the acetone levels in the presence of diabetes. Acetone is a by-product of fat catabolism and serves as an indicator of ketosis and diabetes. The measurement of acetone may be used instead of glucose monitoring. Current research aims to develop and improve noninvasive methods of detecting acetone in sweat that are accurate, sensitive, and stable. The carbon nanotubes (CNTs)–copper oxide (CuO) nanocomposite (NC) improves direct electron transport to the electrode surface in this study. The complex-precipitation method is used to make this NC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the crystal structure and morphology of the prepared catalyst. Using cyclic voltammetry (CV) and amperometry, the electrocatalytic activity of the as-prepared catalyst is evaluated. The electrocatalytic activity in artificial sweat solution is examined at various scan rates and acetone concentrations. The detection limit of the CNTs-CuO NC catalyst is 0.05 mm, with a sensitivity of 16.1 mA cm−2 µm−1 in a linear range of 1–50 mm. Furthermore, this NC demonstrates a high degree of selectivity for various biocompounds found in sweat, with no interfering cross-reactions from these species. The CNT-CuO NC, as produced, has good sensitivity, rapid reaction time (2 s), and stability, indicating its potential for acetone sensing.
    DOI/handle
    http://dx.doi.org/10.1002/masy.202200150
    http://hdl.handle.net/10576/54916
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Computer Science & Engineering [‎2428‎ items ]
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video