• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy harvesting from railway slab-tracks with continuous slabs

    Thumbnail
    Date
    2023
    Author
    Hussein, Mohammed F. M.
    Renno, Jamil M.
    Muthalif, Asan G. A.
    Metadata
    Show full item record
    Abstract
    This paper contributes to the literature and development of knowledge in the topic of energy harvesting by presenting the modelling and calculations of energy from vibration of railway tracks due to moving trains on floating-slab tracks with continuous slabs, considering both the quasi-static and dynamic effects. The floating-slab track is modelled as a double Euler-Bernoulli beam connected by continuous spring and damper elements. The dynamic excitation is accounted for by considering the un-sprung axles of a passing train with a number of coaches. The dynamic excitation is simulated using randomly generated unevenness from standard functions of power spectral density. The responses of rails' beam and slab are calculated for different unevenness realizations, and then used as inputs for a base-excited single-degree-of-freedom system that models the harvester. The change in the harvested energy is investigated due to the change of natural frequency of the harvester, the change of condition of track and change of train's velocity. The parameters used in this paper correspond to tracks and trains for Doha metro and unevenness information from the literature. The results show that more energy can be harvested by tuning the harvester's natural frequency to the frequency of axle-track resonance. It is found that a maximum mean-energy can be harvested from the rails of 0.35 J/kg for a train moving at 100 km/h for a track with poor condition and this is obtained at the axle-track resonance frequency. For the same track condition, a reduction of about 55% and 61% is observed for train's velocities of 70 km/h and 40 km/h, respectively. Using a track with medium and good conditions resulted in reduction of the mean harvested energy at the axle-track resonance by 73.5% and 99.9%, respectively.
    DOI/handle
    http://dx.doi.org/10.1177/10775463211054259
    http://hdl.handle.net/10576/54921
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video