• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MAGNETORHEOLOGICAL ELASTOMER-BASED FLEXIBLE COUPLING FOR TORSIONAL VIBRATION ISOLATION

    Thumbnail
    Date
    2022
    Author
    Ali, Abdelrahman
    Muthalif, Asan G.A.
    Salem, Ayman M.H.
    Syam, Thaer M.I.
    Metadata
    Show full item record
    Abstract
    Employing vibration isolation can avoid the detrimental effects of unattenuated torsional vibrations on rotary mechanical equipment. Semi-active vibration isolators can effectively reduce the vibration levels in mechanical systems. Magnetorheological elastomers (MREs) are a class of smart materials whose mechanical and rheological properties can be reversibly altered under an applied magnetic field. With their inherent property-change characteristics, MREs have been successfully employed in semi-active isolators to improve their operating frequency range. This study develops an MRE-based coupling with variable stiffness to attenuate torsional vibrations. MRE sample with 10% magnetic particles volume fraction is fabricated and attached within the electromagnetic coupling. A sine sweep vibration test is conducted to examine the torsional transmissibility of the MRE-based coupling at different current levels. The results reveal that the natural frequency is shifted from 8.8 to 10.4 as the current increased from 1A (4.83 mT) to 3A (14.10 mT), respectively. The shift in the natural frequency indicates the increase of the MRE stiffness. The findings of this study demonstrate the potential of isolating torsional vibrations using the MRE-based coupling.
    DOI/handle
    http://hdl.handle.net/10576/54931
    Collections
    • Mechanical & Industrial Engineering [‎1508‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video