• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of piezoelectric sensor-actuator for plate vibration control using evolutionary computation: Modeling, simulation and experimentation

    Thumbnail
    View/Open
    Optimization_of_Piezoelectric_Sensor-Actuator_for_Plate_Vibration_Control_Using_Evolutionary_Computation_Modeling_Simulation_and_Experimentation.pdf (1.334Mb)
    Date
    2021
    Author
    Muthalif, Asan G. A.
    Nor, Khairul A. M.
    Wahid, Azni Nabela
    Ali, Abdelrahman
    Metadata
    Show full item record
    Abstract
    The development of lightweight, stronger, and more flexible structures has received the utmost interest from many researchers. For this reason, piezoelectric materials, with their inherent electromechanical coupling, have been widely incorporated in the development of such structures to attenuate their vibrations. However, one of the main challenges is to find the optimal control and sensor-actuator placement. This paper presents an active vibration control for flexible structures, whereby a simply supported plate is taken as the benchmark model. A feedback controller with a collocated sensor-actuator configuration is used. Both disturbance and control signal acting on the plate is created by using piezoelectric (PZT) patches. The analytical model is derived based on the Euler-Bernoulli model. The Optimal location of the collocated sensor-actuator, as well as PID controller gains, are determined using Ant Colony Optimization (ACO) technique, then compared with the Genetic Algorithm (GA) and enumerative method (EM). Optimization in this paper is based on minimizing frequency average energy. The optimal performance value of piezoelectric patch sensor-actuator position and PID controller gains are verified experimentally. It was found that PID controller gains and collocated sensor-actuator location optimizations using ACO, GA and enumerative methods give similar results, which implies the effectiveness of ACO as an optimization technique. More than 20 % of attenuation achieved using the available hardware setup.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3096972
    http://hdl.handle.net/10576/54941
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video