• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Common-mode voltage control through vector selection in three-to-five phase matrix converter

    Thumbnail
    Date
    2014
    Author
    Rahman, Khaliqur
    Aware, M. V.
    Iqbal, Atif
    Al-ammari, Rashid
    Abu-Rub, Haitham
    Metadata
    Show full item record
    Abstract
    Multi-phase matrix converters (more than three phase) are distinctively advantageous as because of reduced per-phase current and unity power factor operation. The electrical motors supplied through these converters do have the common-mode voltage problem. In this paper, an approach to reduce the common-mode voltage is presented through appropriate vectors selection. An availability of the (35) 243 states gives selection freedom within the constraints. The useful ninety three vectors with ninety active and three zero vectors are implemented in conventional space vector modulation technique in matrix converter. The space vector control technique is used with selective large and medium vectors with their disposition in d-q plane having controlled mapping in x-y harmonics plane to reduce the common-mode voltage is discussed. Two operating modes, one within the linear range and another with non-linear range (ten stepping mode) is presented with their performance. The common mode voltage (CMV) voltage reduction with rms voltage gain is observed in ten step operation. The effectiveness of these control algorithms are presented through simulation and verified by implementing it on 2 kVA matrix converter.
    DOI/handle
    http://dx.doi.org/10.1109/ISIE.2014.6864939
    http://hdl.handle.net/10576/55313
    Collections
    • Electrical Engineering [‎2848‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video