• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Education
  • Physical Education
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Education
  • Physical Education
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition?

    Thumbnail
    View/Open
    Pharmacology Res Perspec - 2021 - Esh - Pharmacological hypotheses Is acetaminophen selective in its cyclooxygenase.pdf (533.0Kb)
    Date
    2021-07-18
    Author
    Esh, Christopher J.
    Chrismas, Bryna C.R.
    Mauger, Alexis R.
    Taylor, Lee
    Metadata
    Show full item record
    Abstract
    The precise mechanistic action of acetaminophen (ACT; paracetamol) remains debated. ACT’s analgesic and antipyretic actions are attributed to cyclooxygenase (COX) inhibition preventing prostaglandin (PG) synthesis. Two COX isoforms (COX1/2) share 60% sequence structure, yet their functions vary. COX variants have been sequenced among various mammalian species including humans. A COX1 splice variant (often termed COX3) is purported by some as the elusive target of ACT’s mechanism of action. Yet a physiologically functional COX3 isoform has not been sequenced in humans, refuting these claims. ACT may selectively inhibit COX2, with evidence of a 4.4-fold greater COX2 inhibition than COX1. However, this is markedly lower than other available selective COX2 inhibitors (up to 433-fold) and tempered by proof of potent COX1 inhibition within intact cells when peroxide tone is low. COX isoform inhibition by ACT may depend on subtle in vivo physiological variations specific to ACT. In vivo ACT efficacy is reliant on intact cells and low peroxide tone while the arachidonic acid concentration state can dictate the COX isoform preferred for PG synthesis. ACT is an effective antipyretic (COX2 preference for PG synthesis) and can reduce afebrile core temperature (likely COX1 preference for PG synthesis). Thus, we suggest with specificity to human in vivo physiology that ACT: (i) does not act on a third COX isoform; (ii) is not selective in its COX inhibition; and (iii) inhibition of COX isoforms are determined by subtle and nuanced physiological variations. Robust research designs are required in humans to objectively confirm these hypotheses.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111827822&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/prp2.835
    http://hdl.handle.net/10576/55656
    Collections
    • Physical Education [‎137‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video