A carbon dot-based clay nanocomposite for efficient heavy metal removal
View/ Open
Date
2023Author
Jlassi, KhouloudAl Ejji, Maryam
Ahmed, Abdelgalil Khalaf
Mutahir, Hafsa
Sliem, Mostafa H.
Abdullah, Aboubakr M.
Chehimi, Mohamed M.
Krupa, Igor
...show more authors ...show less authors
Metadata
Show full item recordAbstract
Carbon dots and their derivatives with fascinating photoluminescence properties have recently attracted tremendous scientific attention. This work describes the preparation of novel fluorescent bentonite clay (B), modified with carbon dot nanomaterials (CDs), and its usage as a lead removal platform. The CDs were prepared using a hydrothermal method from graphitic waste which served as the carbon source material. The as-obtained CDs were found to be fluorescent, being spherical in shape, positively charged, and smaller than 5 nm. Encouraged by their structure and photoluminescence features, they were used as surface modifiers to make fluorescent bentonite nanocomposites. Bentonite was used as a negatively charged model of aluminosilicate and reacted with the positively charged CDs. XRD, FTIR, XPS, and fluorescence analysis were used to characterize the prepared materials. The results indicate that the CDs intercalated inside the bentonite matrix were stable with excellent optical properties over time. They were finally used as an efficient hybrid platform for lead removal with a removal efficiency of 95% under light conditions, at room temperature, in an alkaline medium, and after only 10 min of reaction, compared to 70% under dark conditions. The pseudo-second-order kinetics and Langmuir isotherm models were better fitted to describe the adsorption process. The maximum adsorption capacity was equal to 400 mg g-1 toward Pb(ii) removal, at room temperature and pH = 8, under light conditions. To summarize, we have designed UV light stimuli responsive carbon dot-intercalated clay with high Pb(ii) adsorption capacity and long-term stability.
Collections
- Center for Advanced Materials Research [1379 items ]
- Chemical Engineering [1175 items ]