• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and evaluation of lanthana modified Cu-based catalysts for CO2 hydrogenation to value added products

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2468823123002304-main.pdf (8.741Mb)
    Date
    2023-06-01
    Author
    Sardar, Ali
    Kumar, Dharmesh
    Khader, Mahmoud M.
    Mondal, Kartick C.
    El-Naas, Muftah H.
    Metadata
    Show full item record
    Abstract
    This study deals with the development and evaluation of lanthana promoted Cu-based catalysts for CO2 hydrogenation reaction. The samples were prepared using solution combustion synthesis method. The study demonstrates that the incorporation of 3wt% lanthana (La2O3) into a CuO/ZnO/Al2O3 results in a catalyst with exceptionally high catalytic performance. The synthesized catalysts were thoroughly characterized by various analytical tools such as HRTEM, XRD, XPS, H2-TPR, H2-TPD and CO2-TPD. The catalysts were assessed for CO2 hydrogenation reaction in a high-pressure fixed-bed reactor. The La2O3 promoted catalyst with a composition of 0.6Cu/0.3ZnO/0.03La2O3/0.07Al2O3 was selective to methanol (60%) even at an operating temperature as high as 325 °C and an operating pressure of 85 bars. Under similar operating conditions, the 0.6Cu/0.3ZnO/0.03La2O3/0.07Al2O3 catalyst exhibited better CO2 conversion, MeOH selectivity and MeOH production as compared to unpromoted catalyst, 0.6Cu/0.3ZnO/0.1Al2O3. At reaction conditions of T = 300 °C, P = 85 bar, and GHSV=55,000h-1, the lanthana promoted catalyst showed a CO2 conversion and methanol selectivity of 20% and 65%, respectively; while the production rates of carbon monoxide and methanol were 0.55 g/g-cat h−1 and 0.79 g/g-cat h−1. The high catalytic efficiency is attributed to the formation of oxygen vacancies and/or generation of defects in the catalyst surface, smaller Cu nanoparticles with LaOx, and a comparable larger number of mild basic sites. Similar catalyst prepared by wet impregnation method performed poorly, thus highlighting the role of combustion synthesis and the effect of temperature in forming unique metal oxide phases responsible for higher catalytic performance.
    URI
    https://www.sciencedirect.com/science/article/pii/S2468823123002304
    DOI/handle
    http://dx.doi.org/10.1016/j.mcat.2023.113146
    http://hdl.handle.net/10576/55799
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video