• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Zero-bias photocurrents in highly-disordered networks of Ge and Si nanowires

    Thumbnail
    Date
    2015-12-11
    Author
    Rabbani, M. Golam
    Patil, Sunil R.
    Verma, Amit
    Villarreal, Julian E.
    Korgel, Brian A.
    Nekovei, Reza
    Khader, Mahmoud M.
    Darling, R. B.
    Anantram, M. P.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Semiconducting nanowire (NW) devices have garnered attention in self-powered electronic and optoelectronic applications. This work explores and exhibits, for the first time for visible light, clear evidence of the zero-biased optoelectronic switching in randomly dispersed Ge and Si NW networks. The test bench, on which the NWs were dispersed for optoelectronic characterization, was fabricated using a standard CMOS fabrication process, and utilized metal contacts with dissimilar work functions - Al and Ni. The randomly dispersed NWs respond to light by exhibiting substantial photocurrents and, most remarkably, demonstrate zero-bias photo-switching. The magnitude of the photocurrent is dependent on the NW material, as well as the channel length. The photocurrent in randomly dispersed GeNWs was found to be higher by orders of magnitude compared to SiNWs. In both of these material systems, when the length of the NWs was comparable to the channel length, the currents in sparse NW networks were found to be higher than those in dense NW networks, which can be explained by considering various possible arrangements of NWs in these devices.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84950157940&origin=inward
    DOI/handle
    http://dx.doi.org/10.1088/0957-4484/27/4/045201
    http://hdl.handle.net/10576/55830
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video