• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of waste marble powder for the synthesis of novel calcium-rich biochar: Characterization and application for phosphorus recovery in continuous stirring tank reactors

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0301479723027147-main.pdf (1.380Mb)
    Date
    2023-12-27
    Author
    Salah, Jellali
    Khiari, Besma
    Al-Balushi, Maram
    Al-Sabahi, Jamal
    Hamdi, Helmi
    Bengharez, Zohra
    Al-Abri, Mohammed
    Al-Nadabi, Hamed
    Jeguirim, Mejdi
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study investigates—for the first time—the synthesis of a novel Ca-rich biochar (N–Ca–B) and its potential use for phosphorus (P) recovery from both synthetic solutions (SS) and treated urban wastewater (TUW) in a continuous stirring tank reactor (CSTR) mode. The novel biochar was synthesized by pyrolysis at 900 °C of a mixture composed of three different materials: animal biomass (poultry manure; PM), lignocellulosic waste (date palm fronds; DPFs), and abundant mineral waste (waste marble powder; WMP). Characterization of N–Ca–B showed that it has good textural properties: well-developed porosity, and high specific surface area. Furthermore, high calcium hydroxide (Ca(OH)2) and calcium oxides (CaO) nanoparticle loads were observed on the biochar surface. The dynamic CSTR assays indicated that the P recovery efficiency mainly depended on the biochar mass, P influent concentration, and, especially, the Ca content of the feeding solution. Owing to its richness in Ca cations, TUW exhibited the highest adsorbed P amount (109.2 mg g−1), i.e., about 14% larger than the SS. P recovery occurs through precipitation as hydroxyapatite, surface complexation, and electrostatic interactions with positively charged biochar particles. In real-world scenarios, CSTR systems can be applied as a tertiary treatment step in existing wastewater treatment plants (WWTPs). Decanted P-loaded biochar can be used in agriculture as a slow-release fertilizer instead of commercial products.
    URI
    https://www.sciencedirect.com/science/article/pii/S0301479723027147
    DOI/handle
    http://dx.doi.org/10.1016/j.jenvman.2023.119926
    http://hdl.handle.net/10576/55860
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video