• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GAN-Based Approach for Diabetic Retinopathy Retinal Vasculature Segmentation

    Thumbnail
    View/Open
    bioengineering-11-00004.pdf (4.030Mb)
    Date
    2023-12-21
    Author
    Sebastian, Anila
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Almaadeed, Noor
    Metadata
    Show full item record
    Abstract
    Most diabetes patients develop a condition known as diabetic retinopathy after having diabetes for a prolonged period. Due to this ailment, damaged blood vessels may occur behind the retina, which can even progress to a stage of losing vision. Hence, doctors advise diabetes patients to screen their retinas regularly. Examining the fundus for this requires a long time and there are few ophthalmologists available to check the ever-increasing number of diabetes patients. To address this issue, several computer-aided automated systems are being developed with the help of many techniques like deep learning. Extracting the retinal vasculature is a significant step that aids in developing such systems. This paper presents a GAN-based model to perform retinal vasculature segmentation. The model achieves good results on the ARIA, DRIVE, and HRF datasets.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183163499&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/bioengineering11010004
    http://hdl.handle.net/10576/55863
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video