عرض بسيط للتسجيلة

المؤلفDouglas, Dareen
المؤلفBen Hassen, Nada
المؤلفAslam, Asmaa
المؤلفElharrouss, Omar
المؤلفAl-Maadeed, Somaya
تاريخ الإتاحة2024-06-06T10:29:20Z
تاريخ النشر2023-10
اسم المنشور2023 International Symposium on Networks, Computers and Communications, ISNCC 2023
المعرّفhttp://dx.doi.org/10.1109/ISNCC58260.2023.10323852
الاقتباسDouglas, D., Hassen, N. B., Aslam, A., Elharrouss, O., & Al-Maadeed, S. (2023, October). Face Anti-Spoofing Detection Using Structure-Texture Decomposition. In 2023 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-5). IEEE.
الترقيم الدولي الموحد للكتاب 979-835033559-0
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85179850254&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/55868
الملخصA key area in computer vision and biometric authentication systems is detecting and classifying face anti-spoofing. The novel method for face anti-spoofing presented in this paper focuses on color invariant methods. The proposed approach consists to compare two different feature extraction methods: LBP and HOG, used with two different machine-learning models such as KNN and SVM. The suggested method improves the system's ability to discriminate by utilizing color properties and overcoming obstacles like varying lighting and image quality. The structure-texture decomposition is used as a feature that is used to improve the performance of the face anti-spoofing methods. After the experimental results using different techniques, we noticed that structure-texture decomposition can be a good feature for face anti-spoofing detection features.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوعFace-spoofing
HOG method
KNN model
LBP method
SVM model
العنوانFace Anti-Spoofing Detection Using Structure-Texture Decomposition
النوعArticle
الصفحات1-5
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة