• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    APPLICATION OF TIO2-BIOCHAR NANOCOMPOSITES FOR INTEGRATED ADSORPTIVE - PHOTOCATALYTIC WASTEWATER TREATMENT: A TECHNO-ECONOMIC ASSESSMENT ON LAB AND LARGE-SCALE

    View/Open
    Marwa Ezzine_OGS Approved Thesis.pdf (2.369Mb)
    Date
    2024-06
    Author
    EZZINE, MARWA
    Metadata
    Show full item record
    Abstract
    This study synthesized mandarin biochar (MP500) and a TiO2-impregnated nanocomposite, TiO2@MP500, through a hydrothermal approach. A comprehensive set of characterization techniques confirmed the successful synthesis of TiO2@MP500 and its structural properties. Incorporating TiO2 nanoparticles onto MP500 increased the surface area from 4.58 m²/g for MP500 to 91.16 m²/g for 3%TiO2@MP500. TGA analysis confirmed the thermal stability of the produced nanocomposite, and TEM data revealed the presence of fine TiO2 nanoparticles with a particle size of 1.79±0.44 nm. The 3%TiO2@MP500 demonstrated an enhanced ability to remove methyl orange (MO) from water, attributed to a synergistic combination of adsorption and photocatalysis. The Box-Behnken design was used to study the effect of five factors on MO adsorption, including pH, adsorbent dose, reaction time, %TiO2 added to the MP500 biochar, and MO concentration. The adsorption behavior of MO dyes on 3%TiO2@MP500 was studied using equilibrium and kinetic models. It showed a qmax of 104.2 mg/g and followed a pseudo-second-order model, indicating a good fit with an R2 of 0.9731. In the photocatalytic degradation of MO, 3%TiO2@MP500 exhibited a 98.87% decolorization efficiency in only 30 min, with a rate constant of 0.0609 min−1, showing that the photocatalytic performance of 3%TiO2@MP500 was about 1.6 times faster than MO decolorization through adsorption alone. The nanocomposite was successfully regenerated and reused for up to six cycles, maintaining a decolorization efficiency of 90.91%.
    DOI/handle
    http://hdl.handle.net/10576/56267
    Collections
    • Materials Science & Technology [‎63‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video