• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH

    Thumbnail
    View/Open
    s42247-021-00194-6.pdf (6.446Mb)
    Date
    2021
    Author
    Parangusan, Hemalatha
    Bhadra, Jolly
    Al-Thani, Noora
    Metadata
    Show full item record
    Abstract
    Metals, including austenitic steels and alloys, have been extensively applied in industrial and engineering applications. Passive films on metal surfaces are very important for corrosion protection. However, localized attack, such as passive film breakdown and the initiation of pits, is found upon exposure of such metals to aggressive ion-containing environments, leading to material failure and prominent adverse economic and safety concerns. For several decades, the mechanism of passivity breakdown and pit nucleation during pitting corrosion has been widely studied. The present article provides a detailed review of passive film breakdown on metal surfaces and the effects of complicated conditions, such as chloride- and sulfide-ion concentrations, temperature, and solution pH, on passivity breakdown. The possible mechanism for passivity breakdown is reviewed and discussed. The composition, structure, and electronic properties of passive layers are of conclusive importance to understand the leading corrosion mechanism, and they have been investigated with different techniques. Furthermore, we aim to present the structure, chemical composition, and electronic properties of passive films on metal surfaces by using X-ray photoelectron spectroscopy and energy-dispersive spectroscopy. Additionally, the surface morphology of passive films is analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Finally, the effect of chloride- and sulfide-ion concentrations, pH, and temperature on passivity breakdown is discussed in detail.
    DOI/handle
    http://dx.doi.org/10.1007/s42247-021-00194-6
    http://hdl.handle.net/10576/56562
    Collections
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video