• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time Domain Propagation Characteristics with Causal Channel Model for Terahertz Band

    Thumbnail
    Date
    2021
    Author
    Wu, Zhaona
    Ebisawa, Hiroto
    Umebayashi, Kenta
    Lehtomäki, Janne
    Zorba, Nizar
    Metadata
    Show full item record
    Abstract
    In recent years, as more devices are connected to wireless communication systems, the demand for spectrum has increased. As conventional spectrum resources are limited, the THz band becomes an interesting option of more spectrum for wireless communication. However, the channel in THz band has different characteristics compared to the channels in typical frequency bands, and therefore, it is necessary to perform more research to understand the THz channel propagation. In this paper, we focus on the time domain THz channel model under line of sight (LoS) propagation conditions and investigate the channel propagation characteristics in time domain. Firstly, in the full frequency band (FFB) scenario, the time domain impulse responses, which correspond to the time domain THz channel model, are presented for different distances. In the impulse responses, there are significantly delayed paths due to the molecular absorption which causes significant frequency selectivity. Secondly, we extend the model to the limited frequency band (LFB) scenario by applying the root raised cosine filters. The results indicate that the richness of the delayed paths in the impulse response depends on the selected frequency band. In addition, the results indicate that the time delay and total energy strongly depend on the distance whereas the delay spread varies as a function of frequency.
    DOI/handle
    http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473820
    http://hdl.handle.net/10576/56611
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video