• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tailored nanofiber composites for a flexible piezoelectric nanogenerator: Poly(vinylidene fluoride) with BaTiO3/NiFe2O4

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0925838824008417-main.pdf (7.494Mb)
    Date
    2024
    Author
    Parangusan, Hemalatha
    Karuppasamy, K.
    Bhadra, Jolly
    Metadata
    Show full item record
    Abstract
    Owing to the depletion of fossil fuel energy and the pollution caused by chemical batteries, as well as the growing number of electronic devices and the Internet of Things (IoT), there is a greater demand for power devices that are lightweight, inexpensive, durable, and sustainable. An excellent alternative is a self-sufficient, adaptable piezoelectric energy harvester, easily integrated with small electronics to generate real-time, sustained energy. This study develops a piezoelectric nanogenerator (PENG) by uniformly drawing spun membranes containing 2 wt% of barium titanate (BaTiO3) and nickel ferrite (NiFe2O4). The flexible piezoelectric nanogenerator was prepared by electrospinning technique. The electroactive phase content of PVDF is increased by adding nanofillers, and the interfacial polarization between the nanofiller and polymer matrix is significantly enhanced. The obtained electrospun nanofibers were evaluated for mechanical flexibility and piezoelectric responses. The findings demonstrated that, for a given filler composition, the output voltage achieved was more significant than the voltage generated by the pure PVDF. The PVDF/BaTiO3-NiFeO4 electrospun nanofibers demonstrated the highest piezoelectric peak-to-peak output voltage of 4.1 compared to pure PVDF (∼125 mV). From these results, the prepared electrospun polymer nanocomposite fibers may be preferred as the energy-converting devices that can be applied to flexible and wearable electronics. The materials mechanical, breakdown strength and dielectric characteristics align with their potential uses in wearable electronics.
    DOI/handle
    http://dx.doi.org/10.1016/j.jallcom.2024.174254
    http://hdl.handle.net/10576/56692
    Collections
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video