عرض بسيط للتسجيلة

المؤلفAly, Hussein
المؤلفAl-Ali, Abdulaziz
المؤلفAl-Ali, Abdulla
المؤلفMalluhi, Qutaibah
تاريخ الإتاحة2024-07-17T07:14:42Z
تاريخ النشر2023
اسم المنشورIEEE PES Innovative Smart Grid Technologies Conference Europe
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ISGTEUROPE56780.2023.10407215
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56744
الملخصThe Smart Grid Advanced Metering Infrastructure (AMI) has revolutionized the smart grid network, generating vast amounts of data that can be utilized for diverse objectives, one of which is Household Characteristics Classification (HCC). This can help the utility provider profile their customers and tailor their services to meet customer needs. To accomplish this task, we evaluated multiple Machine learning HCC models, with a focus on CNN-based models due to their wide popularity in the field of smart grid signal classification. We evaluated 1D and 2D variants of four different CNN architectures. Our experimental analysis revealed that ResNet-based models achieved the best performance on the task of HCC. Also, we found that 2D models tends to perform better than 1D variants.
راعي المشروعThis publication was made possible by NPRP grant 12C-0814-190012 from the Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work and are solely the responsibility of the authors.
اللغةen
الناشرIEEE Computer Society
الموضوعCNN architectures
Convolutional Neural Network
Electricity Data
Private Smart Grid
Smart Grid Data
Socio-demographic Classification
العنوانAnalysis of Predictive Models for Revealing Household Characteristics using Smart Grid Data
النوعConference Paper
الصفحات-
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة