Analysis of Predictive Models for Revealing Household Characteristics using Smart Grid Data
المؤلف | Aly, Hussein |
المؤلف | Al-Ali, Abdulaziz |
المؤلف | Al-Ali, Abdulla |
المؤلف | Malluhi, Qutaibah |
تاريخ الإتاحة | 2024-07-17T07:14:42Z |
تاريخ النشر | 2023 |
اسم المنشور | IEEE PES Innovative Smart Grid Technologies Conference Europe |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/ISGTEUROPE56780.2023.10407215 |
الملخص | The Smart Grid Advanced Metering Infrastructure (AMI) has revolutionized the smart grid network, generating vast amounts of data that can be utilized for diverse objectives, one of which is Household Characteristics Classification (HCC). This can help the utility provider profile their customers and tailor their services to meet customer needs. To accomplish this task, we evaluated multiple Machine learning HCC models, with a focus on CNN-based models due to their wide popularity in the field of smart grid signal classification. We evaluated 1D and 2D variants of four different CNN architectures. Our experimental analysis revealed that ResNet-based models achieved the best performance on the task of HCC. Also, we found that 2D models tends to perform better than 1D variants. |
راعي المشروع | This publication was made possible by NPRP grant 12C-0814-190012 from the Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work and are solely the responsibility of the authors. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | CNN architectures Convolutional Neural Network Electricity Data Private Smart Grid Smart Grid Data Socio-demographic Classification |
النوع | Conference Paper |
الصفحات | - |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]
-
الذكاء المعلوماتي [93 items ]