• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards On-Device Dehydration Monitoring Using Machine Learning from Wearable Device's Data

    Thumbnail
    View/Open
    sensors-22-01887.pdf (5.245Mb)
    Date
    2022
    Author
    Sabry, Farida
    Eltaras, Tamer
    Labda, Wadha
    Hamza, Fatima
    Alzoubi, Khawla
    Malluhi, Qutaibah
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the ongoing advances in sensor technology and miniaturization of electronic chips, more applications are researched and developed for wearable devices. Hydration monitoring is among the problems that have been recently researched. Athletes, battlefield soldiers, workers in extreme weather conditions, people with adipsia who have no sensation of thirst, and elderly people who lost their ability to talk are among the main target users for this application. In this paper, we address the use of machine learning for hydration monitoring using data from wearable sensors: accelerometer, magnetometer, gyroscope, galvanic skin response sensor, photoplethysmography sensor, temperature, and barometric pressure sensor. These data, together with new features constructed to reflect the activity level, were integrated with personal features to predict the last drinking time of a person and alert the user when it exceeds a certain threshold. The results of applying different models are compared for model selection for on-device deployment optimization. The extra trees model achieved the least error for predicting unseen data; random forest came next with less training time, then the deep neural network with a small model size, which is preferred for wearable devices with limited memory. Embedded on-device testing is still needed to emphasize the results and test for power consumption.
    DOI/handle
    http://dx.doi.org/10.3390/s22051887
    http://hdl.handle.net/10576/56768
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video