• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Finance & Economics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Finance & Economics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PREDICTIONS OF COVID-19 PANDEMIC DYNAMICS IN UKRAINE AND QATAR BASED ON GENERALIZED SIR MODEL

    Thumbnail
    View/Open
    228605-Article Text-520284-3-10-20210406 (1).pdf (1.127Mb)
    Date
    2021
    Author
    Nesteruk, Nesteruk
    Benlagha, Noureddine
    Metadata
    Show full item record
    Abstract
    Background. To simulate how the number of COVID-19 cases increases versus time, various data sets and different mathematical models can be used. Since there are some differences in statistical data, the results of simulations can be different. Complex mathematical models contain many unknown parameters, the values of which must be determined using a limited number of observations of the disease over time. Even long-term monitoring of the epidemic may not provide reliable estimates of the model parameters due to the con-stant change of testing conditions, isolation of infected, quarantine conditions, pathogen mutations, vaccinations, etc. Therefore, simpler approaches are necessary. In particular, previous simulations of the COVID-19 epidemic dynamics in Ukraine were based on smoothing of the dependence of the number of cases on time and the generalized SIR (susceptible-infected-removed) model. These approaches allowed detecting the pandemic waves and calculating adequate predictions of their duration and final sizes. In particular, eight waves of the COVID-19 pandemic in Ukraine were investigated. Objective. We aimed to detect the changes in the pandemic dynamics and present the results of SIR simulations based on Ukrainian national statistics and data reported by Johns Hopkins University (JHU) for Ukraine and Qatar. Methods. In this study we use the smoothing method for the dependences of the number of cases on time, the generalized SIR model for the dynamics of any epidemic wave, the exact solution of the linear differen-tial equations, and statistical approach for the model parameter identification developed before. Results. The optimal values of the SIR model parameters were calculated and some predictions about final sizes and durations of the epidemics are presented. Corresponding SIR curves are shown and compared with the real numbers of cases. Conclusions. Unfortunately, the forecasts are not very optimistic: in Ukraine, new cases will not stop appear-ing until June-July 2021; in Qatar, new cases are likely to appear throughout 2021. The expected long duration of the pandemic forces us to be careful and in solidarity. Probably the presented results could be useful in order to estimate the efficiency of vaccinations.
    DOI/handle
    http://dx.doi.org/10.20535/ibb.2021.5.1.228605
    http://hdl.handle.net/10576/56853
    Collections
    • Finance & Economics [‎437‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video