Case Study: Predicting Future Forex Prices Using MLP and LSTM Models
المؤلف | Mesleh, Mahmoud |
المؤلف | Kiranyaz, Mustafa |
تاريخ الإتاحة | 2024-07-24T10:13:52Z |
تاريخ النشر | 2021 |
اسم المنشور | Proceedings - 2021 2nd International Conference on Electronics, Communications and Information Technology, CECIT 2021 |
المصدر | Scopus |
الملخص | This study compiles 10 years of past daily closing prices for numerous trading assets, and economic reports. The data will be used to train, test, and validate a variety of ANN and LSTM models. This paper introduces a learning window that trains the network using a predefined number of days in the past to predict several days' closing prices in the future. A search grid algorithm is used to select the optimal hyperparameters for the networks. The MLP network managed to achieve an accuracy of above 80% when 30 days of the previous closing price were used as input to the network. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | ANN artificial neural networks financial market Forex LSTM MLP prediction RNN |
النوع | Conference |
الصفحات | 343-346 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2685 items ]