• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient solar energy harvesting via thermally stable tungsten-based nanostructured solar thermophotovoltaic systems

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352492824019482-main.pdf (3.373Mb)
    Date
    2024-08-31
    Author
    Sumbel, Ijaz
    Mehmood, Muhammad Qasim
    Ahmed, Zubair
    Aljaloud, Khaled A.
    Alqahtani, Ali H.
    Al- Adidi, Yosef
    Hussain, Rifaqat
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Electromagnetic radiations are a key energy source, which, by deploying bandgap-engineered devices, are directed onto PV cells to maximize their utilization. In this regard, the Solar Thermophotovoltaic (STPV) systems are vital, consisting of an intermediate absorber-emitter assembly between sunlight and solar cells. A theoretical and computational demonstration of a highly thermally robust, angularly stable, polarization-insensitive, and compact tungsten-based broadband absorber and spectrally selective emitter in symmetric metal-insulator-metal (W-SiO2-W) configuration has been presented. The nanoscale absorber consists of four differently-sized cylinders forming a supercell, and the emitter is cylindrical. The absorber has been optimized over a range of operating temperatures and solar irradiances, manifesting a very high absorption for the visible region with an average of 98.09 % for 400 – 800 nm, exhibiting > 99 % absorption for a BW of 225 nm with a peak of 99.99 % at 674 nm. The emitter has been optimized with 99.72 % emissivity at the desired spectral location. The absorber’s intermediate efficiency is 99.91 % for 5000 suns at 800 °C, which is as high as 72.33 % at a target temperature of 3200 °C. This study aims to match a higher bandgap of 1.5 eV perovskite solar cells and realize higher efficiency than tandem solar cells. The solar cell efficiency is 42.39 %, which results in solar-to-electricity efficiency of 42.38 %, exceeding the Shockley-Queisser (SQ) limit. As a proof-of-concept using a simulation program SCAPS-1D, a perovskite solar cell is illuminated using a bandgap-matched photon, increasing its efficiency from 26.67 % to 45.79 %. Thus, the presented idea achieves cell efficiency beyond the SQ limit without employing complex tandem cells.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352492824019482
    DOI/handle
    http://dx.doi.org/10.1016/j.mtcomm.2024.109967
    http://hdl.handle.net/10576/57488
    Collections
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video