• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Speaker identification using multimodal neural networks and wavelet analysis

    Thumbnail
    View/Open
    IET Biometrics - 2015 - Almaadeed - Speaker identification using multimodal neural networks and wavelet analysis.pdf (600.2Kb)
    Date
    2015
    Author
    Almaadeed, Noor
    Aggoun, Amar
    Amira, Abbes
    Metadata
    Show full item record
    Abstract
    The rapid momentum of the technology progress in the recent years has led to a tremendous rise in the use of biometric authentication systems. The objective of this research is to investigate the problem of identifying a speaker from its voice regardless of the content. In this study, the authors designed and implemented a novel text-independent multimodal speaker identification system based on wavelet analysis and neural networks. Wavelet analysis comprises discrete wavelet transform, wavelet packet transform, wavelet sub-band coding and Mel-frequency cepstral coefficients (MFCCs). The learning module comprises general regressive, probabilistic and radial basis function neural networks, forming decisions through a majority voting scheme. The system was found to be competitive and it improved the identification rate by 15% as compared with the classical MFCC. In addition, it reduced the identification time by 40% as compared with the back-propagation neural network, Gaussian mixture model and principal component analysis. Performance tests conducted using the GRID database corpora have shown that this approach has faster identification time and greater accuracy compared with traditional approaches, and it is applicable to real-time, text-independent speaker identification systems.
    DOI/handle
    http://dx.doi.org/10.1049/iet-bmt.2014.0011
    http://hdl.handle.net/10576/57540
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video