• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reducing Force Ripples and Enhancing Reliability in LSRMs Through Modern Structure and Advanced Control Systems

    Thumbnail
    View/Open
    Reducing_Force_Ripples_and_Enhancing_Reliability_in_LSRMs_Through_Modern_Structure_and_Advanced_Control_Systems.pdf (4.131Mb)
    Date
    2024
    Author
    Masoudi, Siamak
    Ben-Brahim, Lazhar
    Gastli, Adel
    Al-Emadi, Nasser
    Djemai, Mohamed
    Metadata
    Show full item record
    Abstract
    Linear switched reluctance motors (LSRMs) are highly popular due to their simple and robust structure, affordable pricing, and ability to operate at high efficiency. However, a major drawback of these motors is the high ripple force. In this paper, a novel structure for a linear motor with an exceptionally lightweight rotor and a stator with separate poles is presented, making it suitable for use in electric train systems. The proposed system not only significantly reduces force fluctuations but also enables the distribution of force along the length of the moving vehicle, ensuring smooth motion. Moreover, the reliability of the system is enhanced, as the LSRM can continue its motion even in the presence of a fault in one of the phases. In applications with high speeds, the use of a fast controller seems essential, but conventional fast regulators often lack sufficient precision. To address this issue, a new control system is introduced, utilizing a new 12-vector voltage switching table and a current controller. Unlike conventional control methods, the phases firing angle in the proposed system is not fixed. As a result, acceptable performance at different speeds is achieved through an adaptive real-time turn-on position control.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3385437
    http://hdl.handle.net/10576/57608
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video