• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Malware detection for mobile computing using secure and privacy-preserving machine learning approaches: A comprehensive survey

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0045790624001617-main.pdf (1.891Mb)
    Date
    2024
    Author
    Nawshin, Faria
    Gad, Radwa
    Unal, Devrim
    Al-Ali, Abdulla Khalid
    Suganthan, Ponnuthurai N.
    Metadata
    Show full item record
    Abstract
    Mobile devices have become an essential element in our day-to-day lives. The chances of mobile attacks are rapidly increasing with the growing use of mobile devices. Exploiting vulnerabilities from devices as well as stealing personal information, are the principal targets of the attackers. Researchers are also developing various techniques for detecting and analyzing mobile malware to overcome these issues. As new malware gets introduced frequently by malware developers, it is very challenging to come up with comprehensive algorithms to detect this malware. There are many machine-learning and deep-learning algorithms have been developed by researchers. The accuracy of these models largely depends on the size and quality of the training dataset. Training the model with a diversified dataset is necessary to predict new malware accurately. However, this training process may raise the issue of privacy loss due to the disclosure of sensitive information of the users. Researchers have proposed various techniques to mitigate this issue, such as differential privacy, homomorphic encryption, and federated learning. This survey paper explores the significance of applying federated learning to the mobile operating systems, contrasting traditional machine learning and deep learning approaches for mobile malware detection. We delve into the unique challenges and opportunities of the architecture of in-built mobile operating systems and their implications for user privacy and security. Moreover, we assess the risks associated with federated learning in real-life applications and recommend strategies for developing a secure federated learning framework in the domain of mobile malware detection.
    DOI/handle
    http://dx.doi.org/10.1016/j.compeleceng.2024.109233
    http://hdl.handle.net/10576/57693
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video