• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Antibacterial Polyvinylchloride Pre-Treated by Barrier Plasma

    Thumbnail
    Date
    2010
    Author
    Novák, Igor
    Popelka, Anton
    Matyašovskỳ, Ján
    Jurkovič, Peter
    Lehockỳ, Marián
    Vesel, Alenka
    Šoltés, Ladislav
    Asadinezhad, Ahmad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A multistep physicochemical approach making use of plasma technology combined with wet chemistry has fueled considerable interest in delivery of surface-active antiadherence materials. In the first step of the approach, concerning an inherent lack of befitting functional groups on pristine substrate, plasma treatment at low temperature and atmospheric pressure has been substantiated to be productive in yielding reactive entities on the surface [1, 5]. The highlights the functionality of the adopted multistep physicochemical approach to bind polysaccharide species onto the medical-grade PVC surface. DCSBD plasma is capable of raising roughness, surface free energy, and introducing oxygen-containing functionalities anchored onto the surface. A structured poly(acrylic acid) brush of high graft density is synthesized using surface-initiated approach to further improve hydrophilicity and develop a stable brush-like assembly to yield a platform for biomolecular binding. In vitro bacterial adhesion and biofilm formation assays indicate incapability of single chitosan layer in hindering the adhesion of Staphylococcus aureus bacterial strain. Chitosan could retard Escherichia coli adhesion and plasma treated and graft copolymerized samples are found effective to diminish the adherence degree of Escherichia Coli.
    DOI/handle
    http://hdl.handle.net/10576/57750
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video