Condition Assessment Models for Sewer Pipelines
Date
2017-06Metadata
Show full item recordAbstract
Underground pipeline system is a complex infrastructure system that has significant impact on social, environmental and economic aspects. Sewer pipeline networks are considered to be an extremely expensive asset. This study aims to develop condition assessment models for sewer pipeline networks. Seventeen factors affecting the condition of sewer network were considered for gravity pipelines in addition to the operating pressure for pressurized pipelines. Two different methodologies were adopted for models’ development. The first method by using an integrated Fuzzy Analytic Network Process (FANP) and Monte-Carlo simulation and the second method by using FANP, fuzzy set theory (FST) and Evidential Reasoning (ER). The models’ output is the assessed pipeline condition. In order to collect the necessary data for developing the models, questionnaires were distributed among experts in sewer pipelines in the state of Qatar. In addition, actual data for an existing sewage network in the state of Qatar was used to validate the models’ outputs. The “Ground Disturbance” factor was found to be the most influential factor followed by the “Location” factor with a weight of 10.6% and 9.3% for pipelines under gravity and 8.8% and 8.6% for pipelines under pressure, respectively. On the other hand, the least affecting factor was the “Length” followed by “Diameter” with weights of 2.2% and 2.5% for pipelines under gravity and 2.5% and 2.6% for pipelines under pressure. The developed models were able to satisfactorily assess the conditions of deteriorating sewer pipelines with an average validity of approximately 85% for the first approach and 86% for the second approach. The developed models are expected to be a useful tool for decision makers to properly plan for their inspections and provide effective rehabilitation of sewer networks.
DOI/handle
http://hdl.handle.net/10576/5777Collections
- Civil Engineering [52 items ]