• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comprehensive Survey on Energy Efficiency in Federated Learning: Strategies and Challenges

    View/Open
    A_Comprehensive_Survey_on_Energy_Efficiency_in_Federated_Learning_Strategies_and_Challenges.pdf (151.4Kb)
    Date
    2024
    Author
    Gouissem, Ala
    Chkirbene, Zina
    Hamila, Ridha
    Metadata
    Show full item record
    Abstract
    Federated Learning (FL), a burgeoning approach in machine learning, facilitates collaborative model training across distributed devices while maintaining data privacy. Although gaining traction, FL faces a critical challenge in energy efficiency, which is vital for its scalability and practicality, especially in resource-limited settings like IoT networks and mobile devices. This paper provides a comprehensive survey of current methods and techniques aimed at enhancing energy efficiency in FL systems. We delve into various resource allocation techniques and algorithm optimization strategies. Additionally, we examine the role of cutting-edge technologies such as Blockchain and 6G networks, which play a crucial role in minimizing the energy footprint of FL systems. Our survey pinpoints the principal challenges and identifies prospective areas for future research, intending to spur further advancements in energy-efficient FL. We discuss the intricate interplay between energy efficiency, model accuracy, and system scalability in FL. Furthermore, the paper emphasizes the real-world implications of these strategies, highlighting their practical relevance in various technological applications.
    DOI/handle
    http://dx.doi.org/10.1109/ENERGYCON58629.2024.10488805
    http://hdl.handle.net/10576/57844
    Collections
    • Electrical Engineering [‎2844‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video