عرض بسيط للتسجيلة

المؤلفKhan, Muhammad Asif
المؤلفMenouar, Hamid
المؤلفHamila, Ridha
تاريخ الإتاحة2024-08-21T09:49:58Z
تاريخ النشر2023
اسم المنشورInternational Conference Image and Vision Computing New Zealand
المصدرScopus
الرقم المعياري الدولي للكتاب21512191
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/IVCNZ61134.2023.10343548
معرّف المصادر الموحدhttp://hdl.handle.net/10576/57845
الملخصVisual crowd counting estimates the density of the crowd using deep learning models such as convolution neural networks (CNNs). The performance of the model heavily relies on the quality of the training data that constitutes crowd images. In harsh weather such as fog, dust, and low light conditions, the inference performance may severely degrade on the noisy and blur images. In this paper, we propose the use of Pix2Pix generative adversarial network (GAN) to first denoise the crowd images prior to passing them to the counting model. A Pix2Pix network is trained using synthetic noisy images generated from original crowd images and then the pretrained generator is then used in the inference engine to estimate the crowd density in unseen, noisy crowd images. The performance is tested on JHU-Crowd dataset to validate the significance of the proposed method particularly when high reliability and accuracy are required.
راعي المشروعThis publication was made possible by the PDRA award PDRA7-0606-21012 from the Qatar National Research Fund (a member of The Qatar Foundation) and Qatar University Internal Grant No. IRCC-2023-237. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرIEEE
الموضوعCNN
crowd counting
density estimation
GAN
Pix2Pix
العنوانCrowd Counting in Harsh Weather using Image Denoising with Pix2Pix GANs
النوعConference
الصفحات1-6
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة