• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing Healthcare Systems With Deep Reinforcement Learning: Insights Into D2D Communications and Remote Monitoring

    Thumbnail
    View/Open
    Enhancing_Healthcare_Systems_With_Deep_Reinforcement_Learning_Insights_Into_D2D_Communications_and_Remote_Monitoring.pdf (1.612Mb)
    Date
    2024
    Author
    Chkirbene, Zina
    Hamila, Ridha
    Unal, Devrim
    Gabbouj, Moncef
    Hamdi, Mounir
    Metadata
    Show full item record
    Abstract
    The traditional healthcare system is increasingly challenged by its dependence on inperson consultations and manual monitoring, struggling with issues of scalability, the immediacy of care, and efficient resource allocation. As the global population ages and chronic conditions proliferate, the demand for healthcare systems capable of delivering efficient and remote care is becoming more pressing. In this context, Deep Reinforcement Learning (DRL) emerges as a technological advancement that improves the healthcare by enabling smart, adaptive, and real-time decision-making processes. Existing DRL applications in resource allocation, however, face significant challenges. They often lack the adaptability required to respond to the dynamic and complex nature of healthcare environments, struggle with optimizing latency, and fail to address specific node capacity constraints key factors that impacts the effectiveness of healthcare applications. Addressing these challenges, this paper introduces the Deep Reinforcement Learning for Live Video Transmission (DRL-LVT) framework. This new technique optimizes video resource allocation in Device-to-Device (D2D) networks within healthcare settings. By formulating the video resource allocation challenge as a multi-objective optimization problem, the framework aims to minimize network delays while respecting node capacity limitations. The core of DRLLVT is its novel algorithm that leverages Deep Reinforcement Learning (DRL) to dynamically adapt to changing environmental conditions, facilitating real-time decisions that consider node capacities, latency, and the overall network dynamics. We evaluate the performance of our proposed model and benchmark it against existing state-of-the-art techniques. Our results demonstrate significant improvements in efficiency, reliability, and adaptability, making the DRL-LVT framework a robust solution for real-time remote patient monitoring in smart healthcare systems.
    DOI/handle
    http://dx.doi.org/10.1109/OJCOMS.2024.3412963
    http://hdl.handle.net/10576/57849
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video