• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Catalytic Valorisation of Biomass-Derived Levulinic Acid to Biofuel Additive γ-Valerolactone: Influence of Copper Loading on Silica Support

    Thumbnail
    View/Open
    reactions-04-00028.pdf (2.258Mb)
    Date
    2023
    Author
    Boddula, Rajender
    Shanmugam, Paramasivam
    Srivatsava, Rajesh K.
    Tabassum, Nabila
    Pothu, Ramyakrishna
    Naik, Ramachandra
    Saran, Aditya
    Viswanadham, Balaga
    Radwan, Ahmed B.
    Al-Qahtani, Noora
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    γ-valerolactone (GVL) is a crucial chemical feedstock used in the production of fuel additives, renewable fuels, and fine chemicals alternative to petroleum-based solvents and chemicals, supporting the transition to sustainable energy solutions. It is promptly acquired by hydrogenating levulinic acid (LA) in a gaseous or liquid phase with a homogeneous or heterogeneous catalyst using a variety of recognized catalytic processes. Herein, this work focuses on the use of silica-supported copper (Cu/SiO2) catalysts for the gas-phase hydrogenation of LA to GVL under mild reaction conditions. The study analyzes how copper loading can affect the catalytic activity of the Cu/SiO2, while the flow rate of LA, time-on-stream, reaction temperature, and LA concentration affect the catalytic efficiency. The SiO2 support’s various Cu loadings are crucial for adjusting the catalytic hydrogenation activity. One of the studied catalysts, a 5 wt% Cu/SiO2 catalyst, demonstrated ~81% GVL selectivity with ~78% LA conversion and demonstrated stability for ~8 h while operating at atmospheric pressure and temperature (265 °C) and 0.5 mL/h of LA flow rate. The ability to activate hydrogen, high amount of acidic sites, and surface area were all discovered to be advantageous for increased GVL selectivity.
    DOI/handle
    http://dx.doi.org/10.3390/reactions4030028
    http://hdl.handle.net/10576/58986
    Collections
    • Center for Advanced Materials Research [‎1497‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video