• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New genetic insights into improving barley cope with salt stress via regulating mineral accumulation, cellular ion homeostasis, and membrane trafficking

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0098847223000473-main.pdf (7.021Mb)
    Date
    2023-02-07
    Author
    Samar G., Thabet
    Alqudah, Ahmad M.
    Metadata
    Show full item record
    Abstract
    Plant biologists aim for the genetic improvement of barley adaptation to salinity stress. This study was designed to explore the natural variation of responsive physiological and agronomic traits in a diverse spring barley panel under salt-affected soil and the application of selenium nanoparticles (Se-NP) during the vegetative phase. Significant phenotypic variation was detected among the accessions in response to salt stress. Application of 1 mM Se-NP enhanced thousand kernel weight (TKW) by 28% while decreasing the Na+ contents in the flag leaves by 53% . The genomic analysis lead to having in total, of 146 associated SNPs with salt-responsive traits using 19 K SNPs in a genome-wide association study analysis. High significant SNPs were located within or near candidate genes which are potentially involved in the stress tolerance mechanism via enhancing the expression of Na+/H+ antiporters and tonoplast H+-ATPase. The candidate genes include HORVU.MOREX.r3.2HG0184880 and HORVU.MOREX.r3.2HG0199370 that encodes sulfite reductase and anthocyanidin reductase, respectively, confirming the crucial role of Se-NP in improving barley salt tolerance. We further showed the allelic variation inside the genes associated with traits under Se-NP leads to enhancing the accumulation of N, P, K+, ion homeostasis, antioxidant metabolism, nitrogen uptake, and ultimately grain yield. This study provides desirable alleles for salt tolerance in barley breeding strategies.
    URI
    https://www.sciencedirect.com/science/article/pii/S0098847223000473
    DOI/handle
    http://dx.doi.org/10.1016/j.envexpbot.2023.105252
    http://hdl.handle.net/10576/59019
    Collections
    • Biological & Environmental Sciences [‎932‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video