• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biosynthesis of alternan-stabilized selenium nanoparticles: A study on characterization and applications for antibacterial and antifungal purposes

    View/Open
    Biosynthesis of alternan-stabilized selenium nanoparticles A study on characterization and applications for antibacterial and antifungal purposes.pdf (3.425Mb)
    Date
    2024
    Author
    ElObeid, Tahra
    Yilmaz, Mustafa Tahsin
    Ispirli, Humeyra
    Sagdic, Osman
    Taylan, Osman
    Basahel, Abdulrahman
    Karaboga, Dervis
    Durak, Muhammed Zeki
    Dertli, Enes
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, the alternan/selenium nanoparticles (Alt/SeNPs) were characterized with respect to their formation, morphology, size, selenium distribution, molecular, crystallographic, and thermal properties using UV-Vis spectroscopy, SEM, TEM, EDAX, FTIR, XRD, DSC and TGA measurements. UV-VIS measurements confirmed the synthesis of nanoparticles by observing a maximum surface plasmon resonance peak at 212 nm. In this study, alternan contributed to stabilizing the dispersion of SeNPs, resulting in a cluster of spherical and well-dispersed nanoparticles ranging in size from 50 to 90 nanometers. Nanoparticles were found to be highly thermally stable and in a nanocrystalline structure. The ABTS and CUPRAC radical scavenging activities of Alt/SeNPs were remarkable (95% and 78% at 4 and 6 mg/mL levels of Alt/SeNPs, respectively). Alt/SeNPs had also good inhibitory activities (3.5-4.0 and 4-15 mm of inhibition zone levels at 5 mg/mL level of Alt/against foodborne pathogenic bacteria and fungi, respectively).
    DOI/handle
    http://dx.doi.org/10.1080/24701556.2024.2355358
    http://hdl.handle.net/10576/59329
    Collections
    • Human Nutrition [‎435‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video