• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A game theoretic framework for green hetnets using D2D traffic offload and renewable energy powered base stations

    Thumbnail
    Date
    2015
    Author
    Yaacoub, Elias
    Ghazzai, Hakim
    Alouini, Mohamed-Slim
    Metadata
    Show full item record
    Abstract
    This chapter investigates the interplay between cooperative device-to-device (D2D) communications and green communications in LTE heterogeneous networks (HetNets). Two game theoretic concepts are studied and analyzed in order to perform dynamic HetNet base station (BS) on/off switching. The first approach is a coalition-based method whereas the second is based on the Nash bargaining solution. Afterwards, a method for coupling the BS on/off switching approach with D2D collaborative communications is presented and shown to lead to increased energy efficiency. The savings are additionally increased when a portion of the small cell BSs in a HetNet are powered by renewable energy sources. Different utility functions, modeling the game theoretic framework governing the energy consumption balance between the cellular network and the mobile terminals (MTs), are proposed and compared, and their impact on MT quality of service (QoS) is analyzed.
    DOI/handle
    http://dx.doi.org/10.4018/978-1-4666-8642-7.ch013
    http://hdl.handle.net/10576/59414
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Home energy management system embedded with a multi-objective demand response optimization model to benefit customers and operators 

      Amer, A.; Shaban, K.; Gaouda, A.; Massoud, Ahmed ( MDPI AG , 2021 , Article)
      This paper proposes a Home Energy Management System (HEMS) that optimizes the load demand and distributed energy resources. The optimal demand/generation profile is presented while considering utility price signal, customer ...
    • Thumbnail

      Phase change materials for thermal energy storage applications in greenhouses: A review 

      Nishad S.; Krupa I. ( Elsevier Ltd , 2022 , Article)
      Greenhouses represent one of the largest energy-demanding sectors, requiring energy for indoor environment control for plant growth and crop yield. Thermal energy storage using phase change materials (PCMs) has been ...
    • Thumbnail

      Opportunistic routing and data dissemination protocol for energy harvesting wireless sensor networks 

      Bouachir, Ons; Ben Mnaouer, Adel; Touati, Farid; Crescini, Damiano ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      Recent advances in environmental sources harvesting technologies is a promising solution to provide sustainable energy sources for wireless sensor networks (WSN). Renewable energy sources such as solar, thermal and ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video