عرض بسيط للتسجيلة

المؤلفSirin, Okan
المؤلفGunduz, Murat
المؤلفAl Nawaiseh, Hazem M.
تاريخ الإتاحة2024-09-30T11:32:03Z
تاريخ النشر2024-04-30
اسم المنشورSustainability (Switzerland)
المعرّفhttp://dx.doi.org/10.3390/su16093771
الاقتباسSirin, O., Gunduz, M., & Al Nawaiseh, H. M. (2024). Developing an Adaptive Neuro-Fuzzy Inference System for Performance Evaluation of Pavement Construction Projects. Sustainability, 16(9), 3771.
الرقم المعياري الدولي للكتاب2071-1050
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85192539504&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59551
الملخصThis study employs an adaptive neuro-fuzzy inference system (ANFIS) to identify critical success factors (CSFs) crucial for the success of pavement construction projects. Challenges such as construction cost delays, budget overruns, disputes, claims, and productivity losses underscore the need for effective project management in pavement projects. In contemporary construction management, additional performance criteria play a vital role in influencing the performance and success of pavement projects during construction operations. This research contributes to the existing body of knowledge by comprehensively identifying a multidimensional set of critical success performance factors that impact pavement and utility project management. A rigorous literature review and consultations with pavement experts identified sixty CSFs, categorized into seven groups. The relative importance of each element and group is determined through the input of 287 pavement construction specialists who participated in an online questionnaire. Subsequently, the collected data undergo thorough checks for normality, dependability, and independence before undergoing analysis using the relative importance index (RII). An ANFIS is developed to quantitatively model critical success factors and assess the implementation performance of construction operations management (COM) in the construction industry, considering aspects such as clustering input/output datasets, fuzziness degree, and optimizing five Gaussian membership functions. The study confirms the significance of three primary CSFs (financial, bureaucratic, and governmental) and communication-related variables through a qualitative structural and behavioral validation process, specifically k-fold cross-validation. The outcomes of this research hold practical implications for the management and assessment of overall performance indices in pavement construction projects. The ANFIS model, validated through robust testing methodologies, provides a valuable tool for industry professionals seeking to enhance the success and efficiency of pavement construction endeavors.
راعي المشروعThe publication of this article was funded by the Qatar National Library.
اللغةen
الناشرMultidisciplinary Digital Publishing Institute (MDPI)
الموضوعadaptive neuro-fuzzy inference system
construction project management
critical success factors
pavement construction
العنوانDeveloping an Adaptive Neuro-Fuzzy Inference System for Performance Evaluation of Pavement Construction Projects
النوعArticle
رقم العدد9
رقم المجلد16
ESSN2071-1050
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة