عرض بسيط للتسجيلة

المؤلفBen Seghier, Mohamed El Amine
المؤلفPlevris, Vagelis
المؤلفMalekjafarian, Abdollah
تاريخ الإتاحة2024-10-02T05:59:49Z
تاريخ النشر2023
اسم المنشورArabian Journal for Science and Engineering
المصدرScopus
الرقم المعياري الدولي للكتاب2193567X
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s13369-023-07708-w
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59659
الملخصThe damages in reinforced concrete (RC) beams due to reinforcement corrosion is a major problem in the RC industry. Accurate prediction of the residual bearing capacity of RC beams can effectively prevent structural failures or unwanted over-costs of inspections and rehabilitations. This paper proposes a novel machine learning-based prediction framework that combines the adaptive neural fuzzy inference system (ANFIS) with several metaheuristic algorithms for the effective estimation of the flexural strength capacity. Five optimization algorithms are employed for auto-selection of the optimum ANFIS parameters, including differential evolution (DE), genetic algorithm, particle swarm optimization, artificial bee colony, and firefly algorithm (FFA). A comprehensive experimental database of the flexural capacity of corroded steel reinforced concrete beams obtained from the literature, consisting of 177 tests, is used as a case study to evaluate the prediction performance of the proposed hybrid models. The results demonstrate that the proposed hybrid models transcend the previously developed models, while the optimized ANFIS using FFA represents the highest accuracy and strong stability among the proposed models. It is concluded that the proposed framework using ANFIS-FFA can be effectively employed as a useful tool for the accurate estimation of the flexural strength capacity of corroded reinforced concrete beams.
اللغةen
الناشرSpringer
الموضوعAdaptive neural fuzzy inference system
Firefly algorithm
Flexural strength capacity
Machine learning
Nature-inspired algorithms
Prediction
العنوانDevelopment of Hybrid Adaptive Neural Fuzzy Inference System-Based Evolutionary Algorithms for Flexural Capacity Prediction in Corroded Steel Reinforced Concrete Beam
النوعArticle
الصفحات13147-13163
رقم العدد10
رقم المجلد48
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة